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The author has shown in [l] how biorthogonal systems of functions can be used 
to obtain explicit solutions of problems of mechanics (in the form of series in 

terms of the specified systems) which could not be obtained by other methods. 
Below it is shown that such solutions can be constructed for problems which can 
be described by the following equation: 

Lg = f (f E H, g ei H’) (0.1) 

where L is a linear operator acting from the Hilbert space H’ to the Hilbert 
space H. The plane contact problem of the theory of elasticity is used to 
illustrate the method. 

of the elements of H shall be called biorthonormed or B -systems [2] if 

(L %I) = bn; 6, = 0, n # m; 6,, = 1 

The B-systems are important, since for any element f e H we can obtain the 
following formal expansions: 

(1.1) 

To construct the B -systems we introduce two systems of elements {cp,} and {$,,J 
and construct the determinants of the type 

. . . . . . . . . n 

Bn = b,_l,o b,_l,l . . 

= 0, 1,2, . . . 

. bn-1.n Bo = boo 
b 7lO b,, . . . b,,n 

b *m = (cpn.7 %) 

(1.2) 

(1.3) 

)“e z(l,l ,l;the systems {cpn} and {$,} B -linearly independent if B, # 0 
n . . )* 

A met&d bf’constructing the B-systems in explicit form is given by 
Theorem 1. The systems {En} and {qn} constructed from any B - 

linearly independent systems {cpn} and [t;} acrding to th; formur 
10 - *. no 

(1.4) 
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Is0 $1 **f 9, 

(n=0,1,2,... ; B_, := 1; go* = qo; q()* = 90) 

are&systems. 
The proof of the theorem is simple and follows the known proofs (see [3] ). The 

explicit formulas obtained for the B -systems can be transformed into the following 

recurrent formulas: 

ln certain particular important cases the formulas ( 1. Z), (1.4) can be considerably 

simplified. Let e. g. 

(q&a, $tJ = &PI = 0, 72 < m (1.6) 

Then we obviously have 

B, = fi bj.i, qn* = &--1% 
j=o 

Expanding the first deter~nant in (1.4) by the first column and using (1.6), we obtain 

h* = i_ cnm~~m, en, = (- I)“-” A,,B,_, 

l-lere A,.,,,, denote the (n - m)-th order, almost triangular determinants 

b m-t-1, m b m+z,m .* * b-l, m bn,m 

b mtl, m-t1 b 77~2, mtl * + + h-1, +-I bn, m+l 
A, = 0 b m+2, m+Z * f * b-t, m+2 b, m+2 

* e...... * * .* . . . ‘. 

0 0 .*. b 7t-1, n-l b 71, n-l 

m = 0,1,2, (I . . , n - 1 

Ann = 17 An, n-1 = bns n-1 

A,,,+,_2 = b - b n, 71 1 n-l, n-2 - b n-l, n-l b n, n-2 

performing the elementary operations (beginning from the lowest row), we can reduce 
this determinant to the triangular form and obtain 

A,, = b _ b* b” 
* * 

n, n 1 n-l, n-a n-2, n-3 * . . bm+2, m+lbm+l, m 
(1.7) 

m=0,1,2 ,..., n-l 
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bz,j= b,,j- bkk 
b* 

G+r, j 
k=n--l, n--2+-3,...\ 

k+l, k i==o,1,2,... 

2. To solve equation (0.1) we require a system of elements 
the explicit 

h 00 bet a . . b,, 

gn = $g.- t 
&*= . . . . *. . . II 

7% n---l h-1, o h-x, I a . . ha-,, n 
X0 Xl -* -Xn 

or recurrence 

&, j = bn, j) 
(5,) defined by 

(Co* = X0) (2.1) 

(2.2) 

formulas, with (xn) E H”, 
Let us introduce the linear operators A and B acting in HA and Hn respectiv- 

ely, with the corresponding domains of definition in H and H’ respectively. Let us 
take any two systems {a,} G HA and {zn> E Hn and construct the systems {rp,), 
E H and {I$~) E J$’ using formulas 

fin = A on, 9% = LBz,, n = 0, 1, 2, . . . P-3) 

Assuming now that the above systems are B -linearly independent, we use them as 
the initial systems for constructing the B -systems (1.4). After this we construct the 
system {L} E H’ using the formula (%I) and taking into account (2.3) where the 
system (~~1 e H” is defined by the formula 

Xn = &, n = 0,1, 2, * . . (2.4) 

we shall show now that the forma~so~tion of (0.1) is given in explicit form by the 
formula 

Indeed, from (2.3) and (2.4) we have Lx* = qn. Taking this into account and 
comparing the second formula of (1.4) with (2. I), we find that 

G&z = %I (2.6) 
Taking this into account and operating with L on the series (2.5), we arrive at the 
first series of (1.1). 

Let us note some particular cases of the solution (2.5). Futting e. g. B = I, 
A = (L*)-’ in (2.3) and (2.4) (i, e, A is the converse of the conjugate operator 
Lr); Gn = Tn = x,, (HA = HB = EE’ = H) and assuming that the system 

{x;n} is complete in N and orthonormal, we fiid that 

(A%, L&J = W*-‘xnr L~rn) = (31nt ~pn) = &, 

and hence 
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cpn - En =- L”-$&, QT1 = TJn = I& 

With this in mind, we find that the formula (2.5) is transformed into the known form- 
ula (see [4], p, 373) cr 

If on the other hand we assume that 

then from (2.3) we find that I& = %j& = I,%%, and comparison of the formulas (1.4) 
and (2.1) yields the relation L 5, - 5, = 1~~. The formula (2.5) which represents 
the solution of (0.1) will in this case assume the form 

g = *$A J&R) LX (2.9) 

which was obtained using a different approach by Kozin [5]. 
We obtain another important case by setting in (1.2)-( 1.4) and (2.1)-( 2.4) 

A = B = 1, cq, = ‘6, = xn = cp,,, Ha4 = HB = H’ z.= H (2.10) 

and along that the operator & is symme~ical[6]. This yields the relations 

r, = L, L&Z = m (2.11) 

In this case the solution of (0.1) will assume the form 

R = m.O (f, !A E, (2.12) 

which coincides with the formula obtained by a different route by Mlkh~n in [7]. 
Finally, setting in (2.1)-( 2.4) and (I. 2)-( I.. 4) 

we arrive at the relations 

Xn = L*(&, jjn ‘= LL*Sn, IL& = YY~, (2.14) 

and it can be shown that in this case the solution (2.5) of (0.1) represents in explicit 

form the Enskog C8] method of solving the integral Fredholm equations. 
We also note that if 

(f7 E,f = 0, m>N 

then the series (2.3) is replaced by 

This will occur e. g, in the case when 

f = ~ aj~j (~j = LBtrj) (2.15) 
j=o 

where aj are arbitrary constants, since the method of constructing the first system 

of (1.4) implies that (Oj, E,) = 0 when i < m. 
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3. We illustrate the application of the above formulas by considering the plane 
contact problem of impressing a die with symmetric profile b (x) without corners, 
into an elastic half-space. As we know [9], the problem can be reduced to that of 
solving the integral equation (3.1) with conditions (3.2) 

Here p (s) is the contact stress sought, P is a given compressive force, 2a denotes 
the length of the region of contact in question and c is an arbitrary constant (which 
can be eliminated by setting in (3.1) x = 0 and subtracting the resulting expression 
from (3.1)). As a result we have 

2 = as, g = atr, f (s) = -6 f&, 4 f@ = ap (aa) (3.3) 
and in place of (3.1) we can write 

Here the unknown function Q (s) is replaced by g (s) continuous over the range 
--1 \( s < 1 and connected with it by the formula 

4 (4 
and this enables us to satisfy, a p 
first condition assuming the form 

1 

s q(s)& = 
-1 

= r/l - $2 g(s) 

r i o r i, the second condition 

1 

Sf 
1-52g(s)ds= P 

--I 

(3-5) 

of (3.2) with the 

(3.6) 

For the particular case of (0.1) obtained here, we take L2 
AT; (__1 ,I) as H S with the scalar product of the type 

(g*f)= l(i - ss)+ g (s) f(s) ds 
-1 

(--1,1), as H’ and 

&I order to utilize the formula (2.5) in solving the integral equation (3.4), we 
must fix the elements in (2.3) and (2.4), and we shall assume in these formulas that 

A=I, N~=H==L2,(--1,1), B=I, Hg=Ii’=Ls(--1,1) (3.7) 

G+ = ;cn =U,(s), (Pn=an=t*(s)= 
I 

- 4Te fs) n-2, n = 0 

~~~-2~~(~), n = 1,2, . . . 

where T,, (8) and V;, (s) denote the Chebyshev (Tschebyscheff) polynomials of 
first and second kind. Moreover we have 
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Computing the last integral with help of the formula 

- 
(m - 1)! 3% 

z-++-s (2tn t_ I)!! 
P+, --312 (s), m > 1 m-k2 

l/471 [a 1112 - T‘&(s)], m = II 

which follows from the results of [IO], we obtain 

$j= Lllij r=: zs2 
BIT,-T&)]== -2 

qJm=LUm = 

f3,8) 

h-Q - I)1 n 

2-m-s (2&L + I)!! 
[p---p; ---L/r (0) - P,Yi -“O (s)l, m > 1 

The Jacobi polynomials appearing here can be written in terms of the Chebyshev poly- 
nomials according to the formula 

4p+ -“it ($) = m"PJ r”‘a + “I 
1/n w+ 111 

(5 T,+%(s) - T,n (s)) , 

m = 0,1,2,* ** 

by utilizing the known recurrence formulas (see [ll] ). 
Let us now turn to the problem of constructing the B-systems (1.4). We caicul- 

ate the scalar product 

by changing the order of integration and using the relations [IO] 

Next we use the formulas 

which can also be written as 
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provided that we use the formula 

The latter formula can be obtained using the g~erating unction for the Jacobi poly- 
nomilas Pzrn (5) for CL = fi [ll]. 

Let us now com~te the determ~an~ (1,2), (1.4) and (2.1). Al~ougb in the case 
in question the condition (1.6) is not completely fulfilled, nevertheless we succeed in 
completing the ~ornpu~t~o~ of the determinants in question using the operations des- 
cribed below. Wing out the determinant (1.2) with (3.9) taken into account and 
expanding it by the elements of the bottom row, we find that 

B 2m+l L= I&m, Bmt = h, i- Bzm+, m = 0, 1, 2, . . .; !L2 = 0 
Co~equen~y, taking (3.10) into account we obtain 

(3. II) 

Expanding the first determinant of (1.4) for ~2 = 2m (m = 0, ~4~2, . ..> by the 
elements of the last column and using (3,9), we find that 

For the odd n = 2m $- 1 the deter~nan~ in question can be reduced, by virtue 
of (3.9). to the triangular form (by performing the obvious linear transformations of 
the columns), The co~~~nd~g calculations yield 

m 
* 

&;am+l (s) = B2m 21 GZF+I (~1, m f 0,1,2, ‘ * * 
(3.13) 

j=O 

The second determinants of (1.4) with condition (3.9) are also easily calculated for 
the odd n = 2m -j- 1 

rl$l;n+r (4 = B2m%%tnfl (S)t m = 0, 19 2, .a‘ 
(3.14) 

In the case of n = 2m ( we should make the last term of the first row equal 
to zero by linear comb~a~on of the first and last row, and reduce the algebraic com- 
plement of the last term of the bottom row to the ~angular form. This, with (3.11) 
taken into account, yields the formula 

q,*, (s) = Bzm-292m - h2m 8” $zj, m=1,2,... (3.15) 
j=O 

qo” = $0 (s) 

It is obvious that the determinants (2.1) can be obtained from the determinants 
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just discussed by replacing 11~ by Xm =3 U, (s), i. e. 

m-1 

Gm (s) = B~rn-~u~m (S) - bm C lJ’,j (s) = B2m-JJ~rn (s) - (3.16) 

j=o 

+(I - s*)-r[l - I’zm (s)], m= 1,2,... 

50” = xo = Uo (s); &+I (4 = hJ-J2m+1 (s), m = 0, I,, 2, . . . 

substituting the formulas (3.11)-(3.16) into (2.5) enables us to write the explicit ex- 
pression for the solution of the integral equation (3.4) with (3.5) taken into account 

(3.17) 

We note an important (for the contact problems [9] ) particular case of (3.4) just 
solved, in which the right hand side has the form 

f (s) = ; bjs2j 
j=l 

Using (3.8) we can write it, in this case, as a linear combination of the functions 

lpaj (8) , i. e. we arrive at the case (2.15). ln this case the series (3.17) representing 

the solution of (3.4) becomes a finite sum. 
In particular, when a parabolic die acts on an elastic half-space and we have [9] 

f (5) = - y&2 (y = const) 

then the series (3.17) is reduced to its first term and (3.11)-(3.16) together with(3.7) 
yield 

Q (s) = J$1/1-- 

substituting this expression under the integral sign in (3.6), we obtain a formula for 
determining the size of the area of contact: ya2 = P, which coincides with the known 

formula. 

4. Let us touch upon the problem of rigorous proof of the formal solution (2.5) 
of the equation (0.1). We can see that fulfilling e. g. the conditions: a) systems of 
elements (2.3) are B -linearly independent; b) the operator L is defined and 

continuous everywhere in H’ ; c) the first series of (1.1) converges in H to the 
element f, and d) series (2.5) converges in H , is sufficient for a rigorous proof 
of validity of the solution obtained. The condition a) can be conveniently verified 

with help of the following theorem: 

Theorem 2. If the system {cpn} is linearly independent and the system 
{q2} is defined by the formula 

& = Kq,, n = 0, 1, 2, . . . (4.1) 

where the following inequality holds for the operator K (acting from H’ into H) 

in its domain of definition: 
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(f7 Kf) > 0, f # 0 (4.2) 
(i. e. the operator K is positive [6] ), then the systems {cpn} and {qn) are B - 
linearly independent. 

To prove this we substitute into (4.2) an arbitrary element of the form 

f = j$o cjW (j. Ciz # 0) 

and use (4.1) to obtain 

(fv Kf) = jj $ (+j* ‘Fk) 'jC$f > O 
j=o k=o 

(4.3) 

(4.4) 

Strict inequality is guaranteed here for any element of the form (4.3), since the 
case f = 0 is exluded by virtue of the condition that the system {Q} is linearly 

independent. The inequality (4.4) on the other hand implies that the B -matrix gen- 
erates a positive quadratic form, and this as we know from [12] implies the strict pos- 
itiveness of its subsequent principal minors which in the present case coincide with 
the B - determinants, and this proves the theorem. 

In accordance with this theorem 
provided that the equation L*g = 

I#~ = LL*cp, and therefore 

(f, LL*f) = (L*f, 

the condition a) will hold for the case (2.13) 
0 has a null solution only, since we then have 

L*f) > 0, L”f # 0 (f # 0) (4.5) 

In this case a Fredholm operator, say, will be fully acceptable as L , i. e. 

L=I-khK (4.6) 

(K is a completely continuous operator) and the values of h coinciding with the 
eigenvalues of the operator L can be eliminated. 

In the case (2.10) the condition a) will hold by virtue of the theorem, if the 

operator L itself is positive, i.e. if the inequality (4.2) holds for this operator. 

Such a situation may occur e.g. when the operator is integral and generated by a 
kernel of the form 

L (57 Y) = J P V) 1(X, t) I (y, t) dQ (4.7) 
o 

P (9 a 0 (5, Y, r E a) 

Next we explain when the condition c) holds. we restrict ourselves to the cases 

(2.10) and (2.13). Equation (4.1) holds in the first case only when K = L, and in 

the second case only when K = LL*, i.e. the operators K are symmetric in both 

casesandhave the property (4.2). It can be verified that for such operators the choice 
of the complete system {rp,) implies the completeness of the system {$,}, More- 
over, the ‘B -systems (1.4) generated by the systems {cpn} and {$,,} will be 
complete in H. 

Further we note that the symmetric operator defined everywhere in H is bounded 
[6], and this means that the system {En} is a Bessel system by virtue of the known 

assertion (see ~21, p. 438). This is due to the fact that K is a bounded positive 
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symmetric operator which 

(2.14), into its conjugate 
~~~for~ the system {En} I according to (2.11) and 

7L . 
It is known (see 1133 ), that the symmetric operators with property (4.2) have in- 

verse operators which are also symmetric. The latter will be defined everywhere in 
fi provided that L is a Fredholm operator, i.e. provided that it can be written in 

the form (4.6). Indeed, in the case (2.13) when K-1 = (LL*)-r = L*-IL-r, 

this follows from the fact that when h is not an eigenvalue, equations Lg = f and 
L*g = f have a unique solution for every f f H. In the case (2. lo), when K-l 

= L-1, the assumption that L is positive made in order to satisfy the condition 
a), implies that it is symmetric (see [14], p, 352) and has positive eigenvalues. Con- 
sequently in the present case K-1 is defined everywhere in H provided that 3L < 0 
in (4.6), since the equation Lg = f has a unique solution for every f E H. 

Thus li’-’ is a bounded symmet~c operator in both cases (see [S] ) and the rela- 
tion &, = K-rqn holds by virtue of (2.11) and (2.14). This implies that {I&,} 
is not only a Bessel system, but also a Hilbert system (see [Z], p. 439), and this means 

that {En} and {qn} are Riesz-Fischer systems (see [2], p. 440). The latter fact 
implies the existence of constants M and N such, that for every f E J$ 

j. (7, EmT Q M2 II f 112* ii, (f7 %J2 d iv2 II f II” (4.8) 
The above inequalities make possible the proof of weak convergence of the series (1.1) 
in H, and this is equivalent to their convergence in H to f (see [6] ). Indeed, 
when the first series of (1.1) converges e. g. weakly to f , then by virtue of the 

weak completeness [S] of the Hilbert space H it is sufficient to show that the sequ- 
ences (f’“‘, g) (n = 0, 1, 2, .‘.), where g denotes any element of N and f@’ are 

the partial sm-ns of the series of (1. l), are bounded. This is easily done with help of 

the inequalities (4.8). 
Next we find whether the last condition d) holds, In the case (2.10) the converg- 

ence of the series (2.5), or more accurately of (2.12), follows from the fact that the 

equations 

(L = f;*j (ft LrJ = (Lg, E,) = (9, L&n) = (9, %I) 

transform it into one of the biorthogonal series (1.1) the convergence of which was 
proved for any element belonging to lLi. On the other hand, the convergence of 
(2.5) in the case (2.13) can be proved provided that we assume that the system {E,) 

is, in the present case, orthonormal and the inequalities (4.8) hold. 
Thus the formal solution (2.5) of (0.1) is shown to hold in the case (2.131, provid- 

ed that L is a FredhOti operator, i, e. that it can be written in the form (4.Q while 
in the case (2.10) it must also be positive. To ensure the latter property, it is suffici- 

ent (see ~141, p. 352) to assume that h ( 0 and K in (4.6) are Self-Conjugate. 
A strict proof of (2.5) demands, in the general case, the foreknowledge of finer 

properties of the B -systems. 
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